Fire Behaviour of Steel and Composite Floor Systems

New Experimental Evidences

Dr. Olivier Vassart

26th of May 2011

Content of presentation

- Objectives of new fire tests
- Full scale fire tests within the projects of
 - FRACOF
 - COSSFIRE
- Test set-up
- Experimental results
 - Temperature
 - Displacement
- Observation and analysis
- Comparison with simple design methods
- Conclusion
Why more fire tests

- **Background**
 - Cardington fire tests
 - Excellent fire performance under natural fire condition
 - Max θ of steel ≈ 1150 °C, fire duration ≈ 60 min (> 800°C)
 - UK construction details

- **Objectives**
 - To confirm same good performance under long fire duration (at least 90 minutes of ISO fire)
 - To investigate the impact of different construction details, such as reinforcing steel mesh and fire protection of edge beams
 - To validate different fire safety engineering tools

Design of test specimens

- **FRACOF test**

 - Structure grid of a real building
 - Adopted steel frames for FRACOF fire test

Fire Safety Day 2011

Design of test specimens

- COSSFIRE test

Structure grid of a real building

Adopted steel frames for COSSFIRE fire test

Design of test specimens

- Final composite floor systems

FRACOF

COSSFIRE
Design of structural members

Objectives

- Steel frame
 - Steel and concrete composite beams
 - According to Eurocode 4 part 1-1 (EN1994-1-1)
 - Short steel columns

- Composite slab
 - Total depth
 - According to Eurocode 4 part 1-2 (EN1994-1-2)
 - Reinforcing steel mesh
 - Based on simple design rules

- Steel joints
 - Commonly used joints: double angle and end plate
 - According to Eurocode 3 part 1.8 (EN1993-1-8)

Test setup

- Arrangement of headed studs over steel beams

 - TRW Nelson KB 3/4” – 125 (Φ = 19mm; h = 125 mm; \(f_y = 350 \text{ N/mm}^2 \); \(f_u = 450 \text{ N/mm}^2 \))
Steel joints

<table>
<thead>
<tr>
<th>Beam to column</th>
<th>Beam to beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary beam</td>
<td>Primary beam</td>
</tr>
<tr>
<td>Double angle web cleats</td>
<td>Flexible end plate</td>
</tr>
<tr>
<td>Flexible end plate</td>
<td>Double angle web cleats</td>
</tr>
</tbody>
</table>

Grade of steel bolts: 8.8
Diameter of steel bolt: 20 mm

Sizes of structural members

Composite slab

Reinforcing steel mesh

Mesh size: 150x150
Diameter: 7 mm
Steel grade: S500
Axis distance from top of the slab:
- 50 mm FRACOF
- 35 mm COSSFIRE

Steel deck: COFRAPLUS60 – 0.75 mm
Concrete quality: C30/37
Mechanical loading condition

- **15 sand bags of 1512 kg**
 - Equivalent uniform load: 390 kg/m²

- **20 sand bags of 1098 kg**
 - Equivalent uniform load: 393 kg/m²

Preparation of FRACOF fire test

1. [Image of preparation setup]
2. [Image of equipment arrangement]
3. [Image of initial setup]
4. [Image of final setup]

Objectives

- Test set-up
- Experimental results & Observation
- Comparison with simple design methods
- Conclusion

FRACOF

COSSFIRE
Behaviour of the floor during fire

Before the test

Objectives

Test set-up

Experimental results & Observation

Comparison with simple design methods

Conclusion

After the test

Unprotected secondary beams

Composite slab

26th of May 2011

New Experimental Evidences
Experimental results

- Fire temperature
- Heating of unprotected steel beams
- Heating of protected steel members
- Heating of composite slab
- Deflection of the floor
- Observations over the behaviour of composite floor systems
 - Concrete cracking and concrete crushing
 - Failure of reinforcing steel mesh during the test
 - Collapse of edge beams

Objectives
Test set-up
Experimental results & Observation
Comparison with simple design methods
Conclusion
• Heating of unprotected steel beams

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>60</td>
</tr>
<tr>
<td>300</td>
<td>90</td>
</tr>
<tr>
<td>400</td>
<td>120</td>
</tr>
<tr>
<td>500</td>
<td>150</td>
</tr>
<tr>
<td>600</td>
<td>180</td>
</tr>
<tr>
<td>700</td>
<td>210</td>
</tr>
<tr>
<td>800</td>
<td>240</td>
</tr>
</tbody>
</table>

- Much hotter beams in COSSFIRE test = 550 °C and one edge secondary beam heated up to > 600 °C
Fire Safety Day 2011

Experimental results

• Heating of composite slab

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>90</td>
</tr>
<tr>
<td>300</td>
<td>120</td>
</tr>
<tr>
<td>400</td>
<td>150</td>
</tr>
<tr>
<td>500</td>
<td>180</td>
</tr>
<tr>
<td>600</td>
<td>210</td>
</tr>
<tr>
<td>700</td>
<td>240</td>
</tr>
</tbody>
</table>

D and E: reinforcing steel

FRACOF COSSFIRE

Displacement transducers for deflection

<table>
<thead>
<tr>
<th>Displacement transducers</th>
<th>FRACOF</th>
<th>COSSFIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FRACOF COSSFIRE

26th of May 2011
Experimental results

- Deflection of the floors

![Graph showing deflection of floors with FRACOF and COSSFIRE](image)

- Cracking of concrete (FRACOF)

![Concrete crack](image)

- Observation
 - Excellent global stability of the floor despite the failure of reinforcing steel mesh
Experimental results

- **Crushing of concrete (COSSFIRE)**

![Concrete crushing]

- **Observation**
 - Global stability of the floor maintained appropriately despite the failure of one edge beam

Comparison with simple design rules

<table>
<thead>
<tr>
<th></th>
<th>FRACOF</th>
<th>COSSFIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire rating (min)</td>
<td>> 120</td>
<td>> 120</td>
</tr>
<tr>
<td>Deflection (mm)</td>
<td>450</td>
<td>366(*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>376(*)</td>
</tr>
</tbody>
</table>

- **Observation**
 - Experimental results:
 - Fire rating > 120 minutes
New experimental evidences

<table>
<thead>
<tr>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test set-up</td>
</tr>
<tr>
<td>Experimental results & Observation</td>
</tr>
<tr>
<td>Comparison with simple design methods</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
</tbody>
</table>

General conclusions relative to new fire tests

- Excellent performance of the composite floor systems behaving under membrane action for long ISO fire exposure (>120 minutes)
- **High level of robustness of the composite floor system despite certain local failures**
- Specific attention to be paid to construction details with respect to reinforcing steel mesh in order to ensure a good performance of integrity criteria
- Simple design method is on the safe side in comparison with test results
- No sign of failure during cooling phase of the composite floor systems